Af Felix Trier og Dennis Christensen

Når isolatorer bliver til elektronik

tirsdag 26 nov 13

Kontakt

Dennis Valbjørn Christensen
Forsker
DTU Energi
20 96 19 46
En forskergruppe på Institut for Energikonvertering og –lagring på DTU har opdaget et nyt oxid-system, der er superledende og kan mangedoble elektron-mobiliteten i elektroniske oxid-transistorer.

Opdagelsen af det nye oxid-system åbner op for brug af nye oxid-strukturer til elektriske kredsløb, der indeholder både høj-mobile elektroner, dvs. at elektronerne bevæger sig hurtigt i kredsløbene, og samtidig bliver der plads til 100 gange så mange komponenter per kvadratcentimeter i forhold til nuværende elektronik.

Forskergruppen skaber med det nye oxid-system også mulighed for en ny type hukommelse til computere (resistive RAM), superledende transistorer og selvopladende elektriske kredsløb. Kredsløbene oplades f.eks. ved at omdanne kropsvarmen til elektricitet, så batteriet i armbåndsuret eller mobilen aldrig løber tør for strøm.

Opdagelsen tager afsæt i en nobelpris-tale, som fysikeren Herbert Kroemer gav i 2000, hvor han sagde, at ‘Often, it may be said that the interface is the device’. Her refererede han til, at når to materialer mødes, kan der opstå helt ekstraordinære fænomener i grænsefladen mellem materialerne – fænomener, som ikke eksisterer i hvert af de to materialer, men kun i grænsefladen.

Konceptet har været kendt i årtusinder og er anvendt i utallige områder. F.eks. bruges det ekstensivt i moderne elektronik til at lave bl.a. transistorer, der er grundstenen i alle computere. Men med de oxygenholdige materialer (oxider) hældes nyt øl på gamle flasker i jagten på nye elektroniske komponenter ved at gro et tyndt oxidlag oven på en anden oxid, strontium titanat (SrTiO3).

"Når to materialer mødes, kan der opstå helt ekstraordinære fænomener i grænsefladen mellem materialerne – fænomener, som ikke eksisterer i hvert af de to materialer, men kun i grænsefladen. "

En plus en giver superledning

Resultatet er enestående: Selv om hver af de to oxider er elektrisk isolerende og umagnetiske, bliver grænsefladen ledende og magnetisk. Køles det ned, bliver grænsefladen superledende, dvs. at modsat almindelige ledninger kan grænsefladen lede strøm uden at der tabes energi.

Desuden kan der påsættes et elektrisk potentiale, der forøger ledningsevnen 10.000 gange ved stuetemperatur, mens superledningen kan slukkes og tændes ved lave temperaturer. Påføres det elektriske potentiale via en meget spids nål, kan der tegnes elektriske kredsløb (normalt eller superledende) med dimensioner ned til et par nanometer (svarende til 1/100.000 af tykkelsen på et menneskehår). Tilføres overskudsvarme, kan en del af varmen omdannes til elektricitet via den termoelektriske effekt…

Paletten af grænseflade fænomener fortsætter – og alt sker i blot ét system.

Den farverige palet opstår grundet oxidernes unikke elektronstruktur og findes derfor ikke i de konventionelle halvleder-materialer, der bruges i moderne elektronik. Anvendelsesmulighederne af oxider er dog begrænset af, hvor mobile elektronerne er i grænsefladen: elektron-mobiliteten er simpelthen for lav til mange højteknologiske anvendelser. Og det er her, at professor Nini Pryds forskergruppe på DTU Energikonvertering var med til at tage et stort skridt mod at løse den udfordring.

Gruppen opdagede nemlig et nyt oxid-system, som blev offentliggjort i det anerkendte faglige tidsskrift Nature Communications. I dette oxid-system er elektron-mobiliteten mere end 10 gange højere end i typiske konkurrerende systemer. Nøglen til den meget høje elektronmobilitet er fundet ved at gro oxiden aluminium(III) oxid (Al2O3) oven på SrTiO3 med atomar præcision vha. den avancerede teknik pulseret laser deponering (pulsed laser deposition). Al2O3 passer nemlig så godt til SrTiO3, at grænsefladen bliver af så høj kvalitet, at kun få defekter dannes. Herved dannes den høje mobilitet, der som beskrevet åbner op for brug af oxid-strukturer til elektriske kredsløb.

Nyt system skal karakteriseres

Udviklingen stopper ikke her, og DTU Energikonvertering forsker nu på både at forhøje mobiliteten yderligere samt at lægge sidste hånd på karakteriseringen at et nyt oxid-system ligeledes med høj mobilitet.

Desuden planlægger DTU Energikonvertering en stor national ansøgning til et såkaldt Center of Excellence, som skal belyse både fysikken bag oxid-systemerne samt identificere højteknologiske anvendelser af disse.

Nyheder og filtrering

Få besked om fremtidige nyheder, der matcher din filtrering.